

Potentially Toxigenic (PTOX) Cyanobacteria Screen Spicer Group

Prepared: August 31, 2016

Prepared By: GreenWater Laboratories

Received: 8/31/16

Sample ID	<u>Site</u>	Collection Date	
AG 1	P.P. Lake	8/30/16	
AG 2	P.P. Lake	8/30/16	
AG 3	P.P. Lake	8/30/16	
AG 4	P.P. Lake	8/30/16	
AG 5	P.P. Lake	8/30/16	

Method

One mL aliquots of the samples were prepared using Sedgewick Rafter cells. The samples were scanned at 100X for the presence of potentially toxigenic (PTOX) cyanobacteria using a Nikon Eclipse TS100 inverted microscope equipped with phase contrast optics. Higher magnification was used as necessary for identification and micrographs.

Results

AG1

The dominant PTOX cyanobacteria observed were *Dolichospermum* spp., cyanobacteria unicells resembling *Microcystis* sp. and *Aphanizomenon* sp.

AG 2

The dominant PTOX cyanobacteria observed were *Dolichospermum* spp., cyanobacteria unicells resembling *Microcystis* sp. and *Aphanizomenon* sp. The PTOX cyanobacterium *Woronichinia naegeliana* was also observed.

AG3

This sample appeared to be the most filamentous. Macroscopically, a denser film was observed at the surface of the sample. The dominant PTOX cyanobacteria observed were *Dolichospermum* spp., cyanobacteria unicells resembling *Microcystis* sp. and *Aphanizomenon* sp. The PTOX cyanobacterium *Woronichinia naegeliana* was also observed.

AG 4

The dominant PTOX cyanobacteria observed were *Dolichospermum* spp., cyanobacteria unicells resembling *Microcystis* sp. and *Aphanizomenon* sp. The PTOX cyanobacterium *Woronichinia naegeliana* was also observed.

AG 5

The dominant PTOX cyanobacteria observed were *Dolichospermum* spp., cyanobacteria unicells resembling *Microcystis* sp. and *Aphanizomenon* sp. Other PTOX cyanobacteria observed were *Woronichinia naegeliana* and colonies of *Microcystis* sp. This sample appeared to have the greatest abundance of *Woronichinia naegeliana*.

Observations and Recommendations

Every sample was dominated by non-toxin producing filamentous green algae, *Mougeotia* sp. The cyanobacterium *Limnoraphis* sp. was also observed in every sample, but is not currently a known toxin producer.

Of potentially toxigenic cyanobacteria, *Dolichospermum* spp. and free-floating cells resembling *Microcystis* sp. were observed in every sample. Based on these observations, toxin analysis for microcystins, anatoxin-a, cylindrospermopsin, and saxitoxin is currently recommended on all samples.

These observations and relative sample comparisons are qualitative. The Total Algae ID/E service requested will provide the quantitative information required to be able to identify significant differences between these samples.

Micrographs

Mougeotia sp. (green alga) at 400x (ALL)

Cyanobacteria unicells at 400x (ALL)

Limnoraphis cf. birgei (ALL)

Dolichospermum sp. at 400x (ALL)

Dolichospermum sp. 2 at 400x (AG 1 - AG 3)

Aphanizomenon sp. at 400x (AG 1 - AG 4)

Woronichinia naegeliana at 400x (AG 2 - AG 5)

Microcystis sp. at 400x (AG 5 only)

Submitted by:

Sarah Fuller

Sarahofuller

Date:

9/8/16

Anatoxin-a, Cylindrospermopsin, Microcystin & Saxitoxin Report Project: Spicer Group

Sample ID	Site	Collected	
AG1	P. P. Lake	8/30/16	
AG2	P. P. Lake	8/30/16	
AG3	P. P. Lake	8/30/16	
AG4	P. P. Lake	8/30/16	
AG5	P. P. Lake	8/30/16	

Toxins - Anatoxin-a (ANTX-A), cylindrospermopsin (CYN), microcystin (MC), saxitoxin (STX)

Sample Prep

The samples were ultra-sonicated to lyse cells and release toxins. Duplicate sub-samples (Lab Fortified Matrix, LFM) were spiked at 0.1 μ g/L of ANTX-A, 1.0 μ g/L of CYN, 1.0 μ g/L MCLR and 0.2 μ g/L STX.

Analytical Methodology

Liquid chromatography-mass spectrometry/ mass spectrometry (LC-MS/MS) was utilized for the determination of ANTX-A. The [M+H] $^+$ ion for ANTX-A (166 m/z) was fragmented and the product ions (56.0, 91.1, 107.0, 131.1 & 149.6 m/z) were monitored. The current method detection limit is 0.05 μ g/L for ANTX-A.

A microcystins enzyme linked immunosorbent assay (ELISA) was utilized for the quantitative and sensitive congener-independent detection of MCs. The current assay is sensitive to down to a LOD/LOQ of 0.15 μ g/L for total MCs. The average recovery of a laboratory fortified blank (LFB) spiked with 1 μ g/L MCLR was 97%.

A cylindrospermopsin enzyme linked immunosorbent assay (ELISA) was also utilized for the quantitative detection of CYN. The current assay is sensitive down to a LOD/LOQ of 0.1 μ g/L for CYN. A lab fortified blank (LFB) spiked with 1.0 μ g/L CYN was recovered at 116%.

A saxitoxin enzyme linked immunosorbent assay (ELISA) was utilized for the quantitative detection of saxitoxin. The current assay is sensitive down to a LOD/LOQ of 0.05 μ g/L saxitoxin. The LFB (0.2 μ g/L STX spike) recovery was 105%.

Summary of Results

Sample	ANTX-A	CYN	<u>MC</u>	<u>STX</u>
AG1	(μg/L)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
AUI	ND	ND	ND	ND
AG2	ND	ND	ND	ND
AG3	ND	ND	ND	ND
AG4	ND	ND	ND	ND
AG5	ND	ND	ND	ND
Limit of Detection (µg/L)	0.05	0.10	0.15	0.05

ND=Not detected above detection limits

Submitted by:

Mark T. Aubel, Ph.D.

Date:

9/16/16